
--- Corporate office --

Multi Commodity Exchange of India Limited

Exchange Square, CTS No. 255, Suren Road, Chakala, Andheri (East), Mumbai – 400 093

Tel.: 022 – 6649 4000 Fax: 022 – 6649 4151

www.mcxindia.com email: customersupport@mcxindia.com

Circular no.: MCX/CTCL/005/2026 January 05, 2026

__

Trading Market Data Interfaces (APIs) - MCX Market Data Interface (MDI)

And MCX Enhanced Market Data Interface (EMDI) – v1.6

__

In terms of provisions of the Rules, Bye-Laws and Business Rules of the Exchange and in

continuation to Exchange Circular no. MCX/CTCL/088/2023 dated February 09, 2023, and

Circular no.: MCX/CTCL/199/2023 dated March 28, 2023.

Trading Members and Empanelled vendors are requested to note that, the Exchange has

released MCX Market Data Interface (MDI) and MCX Enhanced Market Data Interface (EMDI)

Market Data Interface API - Version 1.6. The details of changes are mentioned in revision

history i.e. Addition of values 7 (Upper Circuit Limit) and 8 (Lower Circuit Limit) in field

MDEntryType in section 6.3 Depth Incremental Message. Member are requested to make

necessary amendments at your end for the aforesaid changes.

The above said changes are available in test environment, Trading Members and Empanelled

vendors can use the same to test changes in their application.

Exchange will publish separate circular to communicated go live date.

In case of any queries or clarification on new interfaces document, trading members/vendors

are requested to get in touch on following contact details:

• Email – ctcl@mcxindia.com

• Phone: +91 22 – 6649 4040 / 6731 8888

Trading Members and Vendors are requested to take note of the same.

For and on behalf of

Multi Commodity Exchange of India Ltd.

Abhay Angarkar

VP - Technology

Encl.: As above

Kindly contact Customer Service Team on 022 – 6649 4040 or send an email at

customersupport@mcxindia.com for any clarification.

mailto:ctcl@mcxindia.com

MCX Trading Market Data Interface
Version 1.6

2 Confidential

Multi Commodity Exchange of India Limited

Trading Market Data Interface

MCX Market Data Interface (MDI) and

MCX Enhanced Market Data Interface
(EMDI)

Version 1.6

January 05, 2026

MCX Trading Market Data Interface
Version 1.6

3 Confidential

Copyright

All trademarks that appear in the document have been used for identification purposes only and
belong to their respective companies.

Document details

Name Version no. Description

MCX_FastFIX_MDI_EMDI_API V 1.6 API documentation for Trading Market Data
interface

Document Revision List

Revision
No. Revision Date Revision Description

1.1 28-Apr-2022 Creation of Version 1.1

1.2 09-Jun-2022

Index Stats message – following fields added

LifeHigh, LifeLow, 52WeekHigh, 52WeekLow, closeIndexFlag

Depth snapshot message – MDSshGrp Sequence modified

Exchange message removed

OpenInterestLastUpdtime field removed in Depth Snapshot &
Incremental message

1.3 17-Aug-2022

Depth Incremental message - Total Buy Quantity and Total sell
Quantity fields are added in <MDIncGrp>

Depth Snapshot message - Total Buy Quantity and Total sell Quantity
fields are modified with 134-Bid Size and 135- Offer Size

1.4 06-Feb-2023

Overlay – Added new MDUpdateAction

Depth Incremental & Snapshot message - Modified description of
TotalTradedValue Field

1.5 24-Mar-2023 Index Stats message - Tag No. 40010 changed to 400010

1.6 05-Jan-2026

Depth Incremental Message - section 6.3.

Addition of values 7 (Upper Circuit Limit) and 8 (Lower Circuit Limit)

in field MDEntryType.

MCX Contact Details

The Exchange’s Member & Vendor may contact Technology Division to seek clarification at:

Multi Commodity Exchange of India Limited

Exchange Square, Suren Road, Chakala, Andheri

(East), Mumbai 400 093.

www.mcxindia.com

Tel: +91 – 22 – 66494000 / 67318888

Fax: +91 – 22 – 66494151

Email – ctcl@mcxindia.com

http://www.mcxindia.com/

MCX Trading Market Data Interface
Version 1.6

4 Confidential

Restriction on Use and Disclaimer of Information and Data

All the information contained in this document constitutes a trade secret and/or information that are
commercial or financial and confidential or privileged. It is furnished in confidence with the
understanding that it will not, without the prior written permission of MCX, be used or disclosed for
other than allowed purposes.

The copyright in this work may be vested with MCX and / or its suppliers. No part of this document
may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means
whether, electronic, mechanical, or otherwise without the prior written permission of MCX.

The recipient acknowledges that MCX and its suppliers may have copyright in the work. The recipient
further agrees that the work is confidential information and contains proprietary MCX information
belonging to MCX and / or its suppliers. The recipient manifests, by its receipt of the work, its
acknowledgment of MCX and / or its suppliers copyright in the work, its acceptance that the work is
confidential information, and its compliance with the terms contained in this notice.

Although MCX has made every effort to provide accurate information at the date of publication, it
does not give any representations or warranties as to the accuracy, reliability or completeness of the
information in this document. Accordingly, MCX, its subsidiaries and their employees, officers and
contractors and its suppliers shall not, to the extent permitted by law, be liable for any direct or
indirect loss arising in any way (including by way of negligence) from or in connection with anything
provided in or omitted from this document or from any action taken, or inaction, in reliance on this
document.

MCX reserves the right to amend details in this document at any time and without notice. Strictly for

private circulation only. This document must not be circulated to other users without prior permission

of MCX

MCX Trading Market Data Interface
Version 1.6

5 Confidential

Contents

1 INTRODUCTION ... 8

1.1 MAIN AUDIENCE ... 8
1.2 DATA FEEDS ... 8
1.2.1 MARKET DATA INTERFACES .. 8
1.3 FURTHER READING MATTER FOR THIS TOPIC .. 8
1.4 DIFFERENCES BETWEEN THE INTERFACES ... 9
1.5 CHOOSING BETWEEN THE T7 EMDI AND THE T7 MDI ... 10
1.6 TRADING STATES ... 11
1.6.1 PRODUCT STATE CHANGES ... 11
1.6.2 INSTRUMENT STATE CHANGES .. 12
1.7 OVERVIEW OF THE VARIOUS MESSAGE TYPES .. 12
1.7.1 T7 EMDI / MDI .. 12
1.8 FIX OVER FAST .. 13

2 FIX/FAST-IMPLEMENTATION .. 13

2.1 STRUCTURE OF MESSAGES .. 13
2.2 FAST TERMINOLOGY ... 14
2.2.1 FAST RESET MESSAGE .. 14
2.2.2 PRESENCE MAP (PMAP) ... 14
2.2.3 TEMPLATE ID (TID) .. 14
2.2.4 DICTIONARIES ... 15
2.2.5 STOP BIT ENCODING ... 15
2.2.6 FAST OPERATORS ... 15
2.3 DECODING THE FAST-MESSAGE .. 16
2.4 TRANSFER DECODING .. 16
2.5 COMPOSING THE ACTUAL FIX-MESSAGE ... 16
2.6 NEW FEATURES IN FAST VERSION 1.2 ... 16
2.7 DATA TYPES ... 17
2.8 FAST VERSION 1.1 COMPATIBLE TEMPLATES .. 17

3 DESCRIPTION OF A TYPICAL TRADING DAY ... 18

3.1 START OF DAY OPERATION .. 19
3.2 BUILD THE INITIAL ORDER BOOK .. 19
3.2.1 BUILD THE INITIAL ORDER BOOK WITH THE T7 EMDI .. 19
3.2.2 BUILD THE INITIAL ORDER BOOK WITH THE T7 MDI ... 20
3.3 UPDATE THE ORDER BOOK .. 20
3.3.1 UPDATE THE ORDER BOOK WITH THE T7 EMDI .. 20
3.3.2 UPDATE THE ORDER BOOK WITH THE T7 MDI ... 20

4 GENERAL ORDER BOOK RULES AND MECHANICS ... 22

4.1 GENERAL ORDER BOOK RULES AND MECHANICS .. 22
4.1.1 NEW PRICE LEVEL... 23
4.1.2 CHANGE OF A PRICE LEVEL .. 24
4.1.3 OVERLAY .. 25
4.1.4 DELETION OF A PRICE LEVEL .. 26

MCX Trading Market Data Interface
Version 1.6

6 Confidential

4.1.5 DELETION OF MULTIPLE PRICE LEVELS FROM A GIVEN PRICE LEVEL ONWARDS 26
4.1.6 DELETION OF MULTIPLE PRICE LEVELS UP TO A GIVEN PRICE LEVEL... 27
4.2 TRADE VOLUME REPORTING (T7 EMDI) .. 28
4.2.1 USE CASE 1: DIRECT MATCH OF SIMPLE INSTRUMENTS .. 28
4.2.2 USE CASE 2: SELF-MATCH PREVENTION (ORDER IS TOTALLY CANCELLED) ... 29
4.2.3 USE CASE 3: SELF-MATCH PREVENTION (ORDER IS PARTIALLY CANCELLED) 29
4.3 TRADE VOLUME REPORTING (T7 MDI) .. 29

5 RECOVERY ... 29

5.1 DETECTING DUPLICATES AND GAPS BY MEANS OF THE PACKET HEADER ... 29
5.2 DELAYED PACKETS .. 31
5.3 MISSING PACKETS ... 31
5.3.1 RECOVERY (T7 EMDI)... 32
5.3.2 RECOVERY (T7 MDI) ... 34

6 DETAILED DATA FEED DESCRIPTION AND LAYOUT ... 35

6.1 SERVICE MESSAGES .. 35
6.1.1 FAST RESET MESSAGE .. 35
6.1.2 PACKET HEADER (T7 EMDI).. 35
6.1.3 PACKET HEADER (T7 MDI) .. 36
6.1.4 FUNCTIONAL BEACON MESSAGE .. 37
6.1.5 TECHNICAL HEARTBEAT MESSAGE ... 37
6.2 MARKET DATA MESSAGES ... 37
6.2.1DEPTH SNAPSHOT MESSAGE .. 37
6.3 DEPTH INCREMENTAL MESSAGE .. 43
6.4 PRODUCT STATE CHANGE .. 46
6.5 MASS INSTRUMENT STATE CHANGE MESSAGE .. 48
6.6 INDEX STATS MESSAGE ... 51
6.7 INSTRUMENT STATE CHANGE MESSAGE .. 52

7 APPENDIX .. 54

7.1 EXAMPLE FOR A XML FAST TEMPLATE ... 54

MCX Trading Market Data Interface
Version 1.6

7 Confidential

List of Abbreviations

Abbreviation Description

EMDI Enhanced Market Data Interface

MDI Market Data Interface

ETI Enhanced Transaction Interface

FAST FIX

FIX Adapted for Streaming (FAST Protocol) (FAST ProtocolSM). FIX
Adapted for Streaming is a standard which has been developed by the
Data Representation

and Transport Subgroup of FPLs Market Data Optimization Working
Group. FAST uses proven data redundancy reductions that leverage
knowledge about data content and data formats.

FIX

Financial Information eXchange. The Financial Information eXchange
(“FIX”)

Protocol is a series of messaging specifications for the electronic
communication of trade-related messages.

In-Band Incremental and snapshots are delivered in the same channel.

Out-Of-Band Incremental and snapshots are delivered on different channels.

Simple instruments Single leg outright contracts

Complex instruments
Any combination of single leg outright contracts, e.g. Future Time
Spreads

Live-live concept
The concept whereby data is disseminated simultaneously via two
separate channels called “Service A” and “Service B”

PMAP Presence MAP

ToB Top Of Book

T7 T7 trading system developed by Deutsche Börse Group

MCX Trading Market Data Interface
Version 1.6

8 Confidential

1 Introduction

MCX offers public market data via MDI and EMDI channel.

The T7 Enhanced Market Data Interface (T7 EMDI): This interface provides un-netted market data.

The updates of the order book are delivered for all order book changes up to a given level; all on-

exchange trades are reported individually.

The T7 Market Data Interface (T7 MDI): This interface provides netted market data. The updates

of the order book are sent at regular intervals; they are not provided for every order book change.

On-exchange trades are not reported individually, however statistical information (daily high/low

price, last trade price and quantity) is provided instead.

The T7 MDI provide the following information to the participants:

• Price level aggregated order book depth and trade statistics.

• Product and instrument states.

T7 MDI /EMDI publish market data information following FIX 5.0 SP2 semantics and are FAST 1.2

encoded. The scope of this manual is T7 EMDI, T7 MDI.

 1.1 Main audience

The target audience of this interface specification is experienced software developer support

staff that may be involved in development/support activities for the T7 Market Data Interfaces.

Prior knowledge of developing for cash or derivative markets is beneficial but not a prerequisite.

Knowledge in a programming language is expected. Programmers who have no experience in

a market data interface environment can gain a basic understanding of the feed behaviour by

reading Part II (How to guide). This manual does not attempt to cover basic knowledge of

programming techniques and software development.

 1.2 Data feeds

All interfaces deliver public reference and market data in the form of snapshots and incremental.

The two public market data interfaces, the T7 EMDI for a high bandwidth network and the T7

MDI for a low bandwidth network, disseminate information across the T7 network to the

receiving application.

 1.2.1 Market data interfaces

The T7 EMDI and the T7 MDI disseminate public market data information in the form of

incremental (event driven) and snapshots (time driven).

The market data snapshot feed can be used to recover lost market data or build up the current

order book. Receiving applications are not expected to be permanently subscribed to this feed.

The market data incremental feed should be subscribed throughout the trading day for

receiving order book updates. All incoming messages should be applied to the copy of the order

book maintained by the member applications in order to have the latest information.

 1.3 Further reading matter for this topic

This document is designed as an independent learning and reference manual. However, for

background information related to network connectivity, FAST/FIX messages or trading related

information (functional), further documents are recommended.

The documents listed below provide useful information.

MCX Trading Market Data Interface
Version 1.6

9 Confidential

FAST- and FIX-related documents:

• FAST specification documents: Explains all FAST rules in detail. FAST 1.2 is the summary of

the FAST 1.1 specification plus the extension Proposal. FIX Adapted for Streaming (FAST)

• FIX specification documents: FIX-messages and FIX-tags FIX Standards

• FIX-Tags: Specifies all FIX-Tags FIXimate

 1.4 Differences between the interfaces

A feed is a message flow of logically grouped messages, e.g. the depth incremental and product

state change messages for a particular product are grouped together within the incremental

feed of T7 EMDI. The T7 EMDI has multiple channels that have either snapshot (A1
S) to (An

S)

and multiple incremental channels (A1
I) to (An

I). The T7 MDI has the snapshots and

incrementals combined over multiple channels (A1
S,I) to (An

S,I).

The snapshot and incremental messages for the T7 EMDI are delivered via separate feeds (out-of band)

and need to be synchronized. Each feed consists of several channels, each of which delivers the

information for a group of products.

Several partitions, each with a unique SenderCompID (49), may contribute to the same multicast

address. The SenderCompID (49) is unique across all partitions. However, it should not be relied upon

as under unlikely but possible conditions on the exchange this is not true.

In contrast to the T7 EMDI, the snapshot and incremental messages for the T7 MDI are sent on one

feed only (in-band), therefore there is no need to synchronize both messages. The feed is also divided

into several channels grouped on product basis.

All feeds are sent on two different multicast addresses via different physical connections (Service A and

B). Service A and Service B are identical in terms of the information provided, i.e. the packet contents,

https://www.fixtrading.org/standards/fast/
https://www.fixtrading.org/standards/
https://fiximate.fixtrading.org/

MCX Trading Market Data Interface
Version 1.6

10 Confidential

sequence numbers and sequence in which packets are sent is the same. This is called “live-live”

concept.

Product groups are distributed across several partitions on the T7 backend side. Service A and Service

B cannot be published at exactly the same time.

1.5 Choosing between the T7 EMDI and the T7 MDI

Both types of interfaces, un-netted and netted, provide market information via multicast using a

price level aggregated order book (as opposed to, for example, order-by-order feeds) but they

have different bandwidth requirements and service levels.

• The T7 Enhanced Market Data Interface (un-netted) disseminates every order book change

up to the configured depth and all on-exchange trades without netting. This interface is

designed for participants that rely on low-latency order book updates and data completeness.

The un-netted market data is partitioned over several channels; each channel provides

information about a group of similar products. As the market becomes busier, the number of

messages (and therefore bandwidth usage) increases.

• The T7 Market Data Interface (netted) has a lower bandwidth requirement compared to the

unnetted version. This interface is designed for participants who do not need to see every

order book update, this has the advantage of keeping the infrastructure costs low. Snapshot

and incremental updates are sent via the same IP multicast address and port combination.

The order book depth may be lower than for EMDI.

This interface aggregates the order book changes over a specified time interval, which is

published in the Product Snapshot message via field MarketDepthTimeInterval (2563). The

intervals of the incremental messages are often higher than MarketDepthTimeInterval. This is

because a smart bandwidth management logic considers the actual overall bandwidth

consumption. This interface has less price levels than the T7 EMDI. Furthermore, only statistical

information is provided for on-exchange trades as well as the price and quantity of the last on-

exchange trade in the netting interval.

The following table shows the main differences between the T7 EMDI and the T7 MDI:

Area T7 EMDI T7 MDI

In-band/Out-

ofband

Delivery

Incrementals and snapshots are

delivered via different channels, i.e.

out-of-band delivery.

LastMsgSeqNumProcessed in the

snapshot feed provides a link

between incremental and snapshot

feed, as it carries the sequence

number of the last message sent on

the incremental feed. Snapshots are

needed only for start-up/recovery.

Incrementals and snapshots are

delivered on the same channel, i.e. in-

band delivery.

Snapshots might contain new

information. A flag (RefreshIndicator)

within the snapshot indicates whether

it has to be applied or not.

LastMsgSeqNumProcessed is not

used.

Sequence

numbers on

message level

Messages on the market data

incremental feed have their own

sequence number range per product;

MsgSeqNum’s exist on the depth

incremental feed only.

Messages on the combined market

data incrementals + snapshot feed

have one sequence number range per

product.

MCX Trading Market Data Interface
Version 1.6

11 Confidential

Area T7 EMDI T7 MDI

Trade Volume

Reporting

Trade Volume Reporting is provided.

Each on-exchange trade is reported

individually.

Only statistical information (daily

high/low price and total traded

quantity) and last trade information is

provided.

Functional

beacon

message

A functional beacon message on a

product level including the last valid

MsgSeqNum is sent if no other

message has been sent for a

configured time period.

Snapshots act as functional beacon

message, hence no separate

functional beacon messages are

provided.

Table 1: Main differences between the T7 EMDI and the T7 MDI

Both interfaces, un-netted and netted, provide different recovery time intervals to offer the participants

the opportunity to implement a suitable public market data recovery mechanism. Overview of the T7

Public Interfaces

This chapter describes the public market data provided by the market and reference data interfaces.

 1.6 Trading states

State changes are disseminated over both the T7 EMDI and the T7 MDI market data feeds.

The T7 EMDI and the T7 MDI market data feeds follow the FIX protocol for the publication of

trading state information. The T7 product and instrument states are displayed by these

interfaces as shown in the following tables.

Below sections shows, Trading states for a sample business day for derivates illustrates state

messages for a typical business day.

1.6.1 Product State Changes

The product state is published with a product state change message (FIX

TradingSessionStatus, MsgType = h). In this message, the product state can normally be found

in the field TradingSessionSubID (625). Only for quiescent product states, the field

TradingSessionID (336) must be evaluated additionally to determine the actual product state.

 product state change message

T7 Product State FIX

TradingSessionID

(336)

FIX

TradingSessionSubID

(625)

FIX TradeSesStatus

(340)

Start of Day 3 = Morning 7 = Quiescent 3 = Closed

Pre-Trading

(special Preopen)

3 = Morning 1 = Pre-Trading 2 = Restricted

Trading 1 = Day 3 = Continuous 2 = Open

Closing

(Not used)

1 = Day 4 = Closing 2 = Open

Post-Trading 5 = Evening 5 = Post-Trading 2 = Closed

End of Day 5 = Evening 7 = Quiescent 3 = Closed

Halt 1 = Day 7 = Quiescent 1 = Halted

MCX Trading Market Data Interface
Version 1.6

12 Confidential

Table 2: Product states

A Halt state is additionally indicated by the FIX field TradSesStatus (340) containing the value 1 =

Halted. A Fast Market is reported with the same message type using the new FIX field

FastMarketIndicator (2447) which can take the values 0 = No or 1 = Yes.

1.6.2 Instrument State Changes

The instrument state is published with an instrument state change message (FIX

SecurityStatus, MsgType = f) in case of a single instrument, or with a (FIX SecurityMassStatus,

MsgType = CO) message in case that all or most of the instruments of a product and of a

specific instrument type1 change their state.

• In the instrument state change message (FIX SecurityStatus, MsgType = f), the instrument

state can be found directly in the field SecurityTradingStatus (326).

• In the mass instrument state change message (FIX SecurityMassStatus, MsgType = CO), the

instrument state can be found in the field SecurityMassTradingStatus (1679). This message

may contain an exception list of instruments that have a different instrument state. The

exception list contains the instrument state in the field SecurityTradingStatus (326) for each

of these instruments.

• The status of the instrument (as opposed to the instrument state) distinguishes active and

published instruments and is contained in the field SecurityStatus (965).

(mass-) instrument state change message

T7 Instrument State FIX SecurityTradingStatus (326) /

FIX SecurityMassTradingStatus (1679)

2 = Trading Halt.

Trading Halt 2 = Trading Halt

Closed 200 = Closed

Restricted 201 = Restricted

Continuous 203 = Continuous

Table 3: Instrument states

 1.7 Overview of the various message types

The various message types can be divided into "Service Messages" and "Data Messages".

1.7.1 T7 EMDI / MDI

Service messages:

• Technical heartbeat message is sent out on all multicast addresses of the T7 EMDI/MDI.

• Functional beacon message (T7 EMDI) contains the last valid MsgSeqNum of each

product and is only sent on the market data incremental feed when there is no activity in a

product for a certain amount of time. No functional beacons are sent for the T7 MDI

because the snapshots act as a functional beacon.

MCX Trading Market Data Interface
Version 1.6

13 Confidential

Data messages:

• Depth snapshot message is used to send a snapshot of all price levels of the order book

and statistical information about on-exchange trades. This message can be used

whenever the order book needs to be rebuilt.

• Depth incremental message is used to receive updates on the initial order book.

• Product state change message is used to publish the state of the T7 products.

• Mass instrument state change message provides the state information for all instruments

of a product. This message can publish different states for instruments of the same

product, e.g. in case of a volatility interruption the front month could be in a different state

than the back month.

• Instrument state change message provides state information for a single instrument.

A detailed description of the message types listed above is given in subsequent sections,

Detailed data feed description and layout.

 1.8 FIX over FAST

FIX messages are sent out in FAST 1.2 encoded format. The receiving software decodes

the FAST messages according to the FAST 1.2 rules.

After the decoding process, the actual FIX message can be built by applying the FIX

structure to the decoded message.

Participants need a standard FAST template based decoder in order to be able to use the

T7 EMDI and T7 MDI. Alternatively, participants can use their own FAST decoder

implementation.

2 FIX/FAST-Implementation

This chapter describes the message structure for the three interfaces. It also provides the basic

FASTrules used by the interface and describes the basic steps from receiving a FAST datagram,

decoding it and building FIX-messages out of it.

The FAST 1.2 specification is provided as an extension to the FAST 1.1 specification. The

documents can be found under the following links:

FAST Specification (Version 1.1), FAST version 1.2 Extension Proposal FIX Adapted for

Streaming (FAST)

 2.1 Structure of Messages

The two public interfaces disseminate data in UDP datagrams in network byte order also

known as big endian byte order. This includes vector encoded numbers. A UDP datagram

has the following structure:

Figure 1: Structure of a UDP datagram

• The UDP datagram starts with the packet header message.

• Followed by a FAST reset message.

https://www.fixtrading.org/standards/fast/
https://www.fixtrading.org/standards/fast/

MCX Trading Market Data Interface
Version 1.6

14 Confidential

• Followed by the actual message (Message1).

• Possibly followed by one or more messages (Message2 - Messagen).

Each message shown in the picture above has the following sub structure:

• PMAP (Presence Map).

• TID (Template ID).

• Data Part.

This is shown in the following diagram:

Figure 2: Structure of consecutive messages within one datagram

One UDP datagram contains one or more FAST encoded FIX 5.0 SP2 messages. The UDP protocol

adds a 28 byte header to every packet (20 byte IP header plus 8 byte UDP protocol header). Due to

the unreliable nature of UDP, every UDP datagram is self contained; there is no dependency across

datagrams.

2.2 FAST terminology

 2.2.1 FAST reset message

The T7 Market Data Interfaces use global dictionary scope for FAST operators. All

operators share the same dictionary regardless of the template and application type. The

FAST reset message is inserted at the start of every datagram to explicitly reset all the

dictionaries.

 2.2.2 Presence Map (PMAP)

The presence map is a bit combination indicating the presence or absence of a field in the

message body, one bit in the PMAP for each field that uses a PMAP bit according to the

FAST type. The allocation of a bit for a field in the presence map is governed by the FAST

field encoding rules.

 2.2.3 Template ID (TID)

The template identifier is represented by a number (integer) and points to a specific FAST

template which describes the layout and characteristics of the message to be decoded.

FAST uses templates to reduce redundancies within a message by using the following

methods:

• The order of fields within the FAST message is fixed, so the field meaning is defined

by its position in the message and there is no need to transfer the field tag to describe

the field value.

MCX Trading Market Data Interface
Version 1.6

15 Confidential

• The templates specify the order and occurrence of message fields like type, presence

and operators.

The following list contains the message types and their corresponding template identifiers used with the

three T7 interfaces:

Message TID T7 EMDI TID T7 MDI

Functional Beacon (aka Functional Heartbeat) 109 -

Packet header for T7 EMDI / MDI 60 65

FAST Reset Message 120 120

DepthSnapshot 93 101

DepthIncremental 94 102

ProductStateChange 97 108

MassInstrumentStateChange 99 104

InstrumentStateChange 98 103

Index Stats 50 51

Table 4: Template identifiers for T7 EMDI/MDI

Note: The template id for the packet header will change in future releases and can be used to

identify the software release.

Example: The TID=65 indicates the packet header for T7 MDI in the current release. In the next

release the TID for the packet header will change to another value.

 2.2.4 Dictionaries

A dictionary is a cache in which previous values are stored. FAST operators make use of the

previous values.

 2.2.5 Stop bit encoding

Most FAST fields are stop bit encoded, each byte consists of seven data bits for data transfer

and a stop bit to indicate the end of a field value. An exception from this rule are Byte Vectors

as they are used in the packet header of T7 EMDI/MDI.

 2.2.6 FAST operators

Field operators are used to remove redundancies in the data values. Message templates are

the metadata for the message and are provided earlier. When the messages arrive, the

receiving application has complete knowledge of the message layout via the template

definition; it is able to determine the field values of the incoming message.

The following FAST operators are used in T7 EMDI/MDI

MCX Trading Market Data Interface
Version 1.6

16 Confidential

• delta.

• copy.

• constant.

• default.

• increment.

For more information on the new FAST 1.2 features please refer

to: FAST Extension Version 1.2.

 2.3 Decoding the FAST-message

The FAST messages need to be decoded by means of the FAST templates. The FAST templates

provide all necessary information to decode a message such as data types (e.g. uInt32), field

names (e.g. MsgType), FIX tags (e.g. 35) and FAST operators (e.g. increment). The FAST

templates also contain information about repeating groups (sequences).

 2.4 Transfer decoding

Transfer decoding describes the process of how the fields are decoded from the FAST format.

Transfer encoding describes the opposite process.

 2.5 Composing the Actual FIX-Message

A typical FAST decoder would not deliver FIX messages after the decoding process. In order to

compose FIX messages, applications need to apply additional rules.

The sequence of FIX-fields after composing the FIX-message on participants’ side is not

governed by the FIX-layout of the messages, i.e. the fields names of the FIX-message do not

need to be in the same sequence. The FIX message, however, needs to fulfill the minimum

requirement:

• BeginString(8) in the Standard Header must be the first tag in the message.

• BodyLength(9) in the Standard Header must be the second tag in the message.

• MsgType(35) in the Standard Header must be the third tag in the message.

• CheckSum(10) Standard Trailer must be the last tag in the message.

 2.6 New features in FAST version 1.2

The following new features from the FAST 1.2 protocol are used:

• New Type Definition Syntax: This allows the separation of the “type definitions” from

the “type usage” within template definitions.

• Enumeration: This feature can be used when there is a fixed set of valid values for a

single field.

• Set (multi-value field): This feature can be used when there is a fixed set of valid

values which could be sent together as a bit combination instead of using a repeating

group. An example for a set would be the field TradeCondition (277) in the Depth

incremental message. Sets are used to define the valid values for fields.

https://www.fixtrading.org/standards/fast/
https://www.fixtrading.org/standards/fast/

MCX Trading Market Data Interface
Version 1.6

17 Confidential

• Timestamp Data Type: The use of this feature allows native support of time stamp

fields which becomes increasingly important for the T7 market data interface. A time

stamp is an integer that represents a number of time units since an epoch.

 2.7 Data types

The T7 implementation of FAST utilizes the following FAST data types:

• Decimal

• Length

• String

• uInt32/uInt64/int64

• Byte vector

• Set

• Enum

• Timestamp

 2.8 FAST version 1.1 compatible templates

Participants who choose not to upgrade their FAST 1.2 decoders can use FAST 1.1 compatible

files offered by T7 trading architecture. The following needs to be considered:

• Enumerations: As described in the previous chapter enumerations have a list of codes.

Participants receive an integer but not the description (meaning) of the integer. Since FAST

1.1 does not support enumerations this description of codes needs to be taken from the

valid values provided with T7 Market Data Interfaces - XML FAST Templates.

• Sets: Similar to enumerations, however, participants receive a bitmap and multiple items

from the list. The items need to be taken from the valid values provided with T7 Market

Data Interfaces - XML FAST Templates.

.The FAST version 1.2 Extension Proposal describes how the encoded field (wire format) value looks.

Example for enumeration: TradingSessionID (336) can have one of the following values as defined in

the FAST 1.2 XML files:

<define name="TradingSessionID">

<enum>

<element name="1" id="Day"/>

<element name="3" id="Morning"/>

<element name="5" id="Evening"/>

<element name="6" id="AfterHours"/>

<element name="7" id="Holiday"/>

<copy/>

</enum>

</define>

http://www.xetra.com/xetra-en/technology/t7/system-documentation/release9
https://www.fixtrading.org/standards/fast/

MCX Trading Market Data Interface
Version 1.6

18 Confidential

The wire format of the values 1, 3, 5, 6, 7 is 0, 1, 2, 3, 4, i.e. each value is represented by an index.

Enumerations are not defined in the FAST 1.1 XML files. When the decoder receives a 4 he needs to

know that it means “Holiday”.

Example for set: TradeCondition (277) can have one or more values as defined in the FAST 1.2 XML

files:

<define name="TradeConditionSet">

<set>

<element name="U" id="ExchangeLast"/>

<element name="R" id="OpeningPrice"/>

<element name="AX" id="HighPrice"/>

<element name="AY" id="LowPrice"/>

<element name="AJ" id="OfficialClosingPrice"/>

<element name="AW" id="LastAuctionPrice"/>

<element name="k" id="OutOfSequenceETH"/>

<element name="BD" id="PreviousClosingPrice"/>

<element name="a" id="VolumeOnly"/>

<element name="BB" id="MidpointPrice"/>

<element name="BC" id="TradingOnTermsOfIssue"/>

<element name="SA" id="SpecialAuction"/>

<element name="TC" id="TradeAtClose"/>

</set>

</define>

The wire format of the values U, R, AX, AY, AJ, AW, k, BD, a is 1, 2, 4, 8, 16, 32, 64, 128, 256, i.e.

each value is represented by a different bit. The values can be added together to form combinations

of the values. If U, AX are sent then 1 + 4 = 5 are the encoded field values.

Sets are not defined in the FAST 1.1 XML files. When the decoder receives a 5 he needs to know

that it is a combination of 1 and 4 which is “ExchangeLast” and “HighPrice”

3 Description of a typical trading day

This chapter describes a typical trading day, from the start until the end of trading; the following

steps need to be taken to prepare for and to receive market data:

Figure 3: Typical trading day

MCX Trading Market Data Interface
Version 1.6

19 Confidential

 3.1 Start of day operation

Before processing any market data, receiving applications need to retrieve the reference data.

Members are advised to verify that the received reference data refers to the correct business day

to ensure that the reference data processed on their end is actually the reference data for the

business day in question and not reference data from e.g. the previous business day.

At start-up, reference data must be processed to create the initial order book baseline.

 3.2 Build the initial order book

Participants first have to build the initial order book. The order book has to be maintained

per instrument.

Note: Sequence numbers contained in the market data messages are incremented per

product.

 3.2.1 Build the initial order book with the T7 EMDI

For each instrument within the desired products do the following:

Figure 4: T7 EMDI initial order book

MCX Trading Market Data Interface
Version 1.6

20 Confidential

 3.2.2 Build the initial order book with the T7 MDI

The following sequence is recommended for the T7 MDI:

Figure 5: T7 MDI initial order book

The field LastMsgSeqNumProcessed (369) in the T7 MDI snapshots can be ignored because snapshots

and incrementals are sent in-band and don’t need to be synchronized with each other.

MDI does not send all snapshots of all instruments of a product contiguously. T7 MDI incremental

messages might contain incremental entries (MDIncGrp) for all instruments of a product. A joining

application which is in the middle of building the initial order books must discard entries for instruments

for which they have not received a snapshot yet.

 3.3 Update the order book

Every update in the form of a depth incremental or depth snapshot message contains the

price level and the actual price to which the instruction needs to be applied. The receiver

application can update information at a particular level with the new information.

Once participants have built the current order book it needs to be continuously updated:

 3.3.1 Update the order book with the T7 EMDI

As long as the MsgSegNum values for the depth incremental message are contiguous per

product do the following 2:

• Keep applying all depth incremental messages to the current order book.

Note: Depth snapshot messages are sent on a different channel to the depth incremental

messages. Changes to the order book are also sent using the depth snapshot messages but

the information is also provided with the incremental messages. Snapshot messages don’t need

to be processed unless the order book needs to be recreated.

3.3.2 Update the order book with the T7 MDI

As long as the MsgSegNum values for the depth incremental message are contiguous per

product do the following11:

• Keep applying all depth incremental as well as depth snapshot messages (with

RefreshIndicator (1187) = Y) to the current order book.

2 The reason is that the unreliable nature of UDP multicast can cause packets to arrive delayed, in incorrect

sequence or may be missing.

MCX Trading Market Data Interface
Version 1.6

21 Confidential

Each incremental message can carry different update instructions with the “update action” (New,

Change, Delete, Delete From, Delete Thru, Overlay).

Note: The depth snapshot messages for the T7 MDI are sent on the same channel as the depth

incremental messages. If the RefreshIndicator (1187) is set, changes to the order book are

processed into the depth snapshot messages and not provided as separate depth incremental

messages.

MCX Trading Market Data Interface
Version 1.6

22 Confidential

4 General Order Book rules and mechanics

 4.1 General order book rules and mechanics

The T7 Market Data Interfaces, T7 EMDI and MDI, provide order book updates from level 1

to the maximum level. The maximum level is provided for each product in the product

snapshot records in the reference data, field MarketDepth (264). The order book can be

constructed by the depth incremental messages or by the depth snapshot message.

All on-exchange trades and order book updates are reported via the same depth incremental

messages. However, trades are always sent out prior to order book updates. The following

design principles apply to order book updates:

• Orders are aggregated per price level and are not distributed individually.

• Changes to the book that result from one atomic action in the matching engine are

disseminated in one depth incremental message for T7 EMDI.

• Each T7 EMDI packet relates only to a single product. In other words, although each

T7 EMDI packet may contain multiple messages, those messages will always relate to

the same product. This does not apply to T7 MDI where a single packet may relate to

multiple products.

• Price levels are provided explicitly (field: MDPriceLevel (1023)) and do not need to be

derived through the price itself.

• During the product states “Start-Of-Day“or when no price levels exist, an empty book

(MDEntryType=J) is disseminated for the depth snapshot message (not for

incremental). In “Pre-Trading “, statistical information is sent in addition to order book if

there are any GTC/GTD orders.

• After Post-Trading, further market data updates are not disseminated.

• Order book update instructions are sent for each order book side without a specific

order of update actions but ordered by price level instead.

– from best outright price (price level 1)

– down to the worst price (max. price level configured per product).

– if the resulting book depth, after each applied individual orderbook update

instruction, is larger than the specified maximum product depth only the specified

maximum product depth must be saved.

• Intraday expired instrument information is provided by a depth incremental and

instrument state change message.

• Only the snapshot and incremental messages of the T7 MDI carry a common and

contiguous sequence number per product. The incremental message of T7 EMDI

contains a contiguous sequence number per product across all messages, while the

snapshot message provides the last sequence number (LastMsgSeqNumProcessed)

sent in the incremental message.

Note: The order book is only valid after the entire incremental message has been fully processed.

MCX Trading Market Data Interface
Version 1.6

23 Confidential

Figure 6 illustrates a typical order book and terminology used in the following chapters.

Figure 6: Typical order book

 4.1.1 New price level

When a new price level is created in the order book, a depth incremental message is sent with

field MDUpdateAction (279) = 0 ("New”). This indicates that:

• The new price level is to be inserted at the specified price level. 3.

• All existing rows in the order book at the specified and higher levels are to be

incremented accordingly. 4.

• Price levels exceeding the maximum specified depth must not be kept in memory.

Note: The field MDPriceLevel (1023) is used to identify which level is being inserted.

Example: Buy Limit Order, 10@58.22, enters an empty order book:

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1068

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

3 A MDUpdateAction (279) = 0 (“New”) is also disseminated whenever the quantity changes for the implied

price (empty price level).
4 This is not the case if the MDUpdateAction (279) = 0 (“New”) is sent for the implied price (with empty price

level).

MCX Trading Market Data Interface
Version 1.6

24 Confidential

Tag number Tag name Value Description

268 NoMDEntries 1

279 > MDUpdateAction 0 New

269 > MDEntryType 0 Bid

48 > SecurityID 8852 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 58.22 Price

271 > MDEntrySize 10 Quantity

346 > NumberOfOrders 1 Number of order/quotes on this level

1023 > MDPriceLevel 1 Book level

273 > MDEntryTime t0 official time of book entry

Table 5: MDUpdateAction “New”

 4.1.2 Change of a price level

A depth incremental message with MDUpdateAction = 1 ("Change”) indicates

• A change at a given price level.

• All fields but the price on the specified side at the price level should be updated.

Note: MDUpdateAction= “Change” is sent only for depth ≥1 when the price does not change.

A MDUpdateAction (279) "Change” contains a price which can be used as a consistency

check. However, it never contains a price that is different from the existing one on the current

price level.

Example: Quantity changed to 8 for limit order above:

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1069

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 1 Change

269 > MDEntryType 0 Bid

48 > SecurityID 8852 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

MCX Trading Market Data Interface
Version 1.6

25 Confidential

Tag number Tag name Value Description

270 > MDEntryPx 58.22 Price

271 > MDEntrySize 8 Quantity

346 > NumberOfOrders 1 Number of order/quotes on this level

1023 > MDPriceLevel 1 Book level

273 > MDEntryTime t1 official time of book entry

Table 6: MDUpdateAction “Change”

 4.1.3 Overlay

A depth incremental message with MDUpdateAction (279) = 5 ("Overlay”) is used to

 • Change the price of a given price level. Other parameters, e.g quantity might also change.

 Note: MDUpdateAction=“Overlay” is sent only for depth ≥ 1, i.e. the field MDPriceLevel (1023)

must be present. In contrast to the MDUpdateAction=“Change” this instruction contains a price

change.

Example: Buy limit order replaces the best buy limit order during instrument state “Auction”:

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 205

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 70 Product

268 NoMDEntries 1

279 > MDUpdateAction 5

269 > MDEntryType 0 Bid

48 > SecurityID 63743 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 2.48 Price

271 > MDEntrySize N/A Quantity remains the same in this example

1023 > MDPriceLevel 1 Book level

273 > MDEntryTime t5 official time of book entry

Table 7: MDUpdateAction “Overlay”

MCX Trading Market Data Interface
Version 1.6

26 Confidential

 4.1.4 Deletion of a price level

A depth incremental message with MDUpdateAction (279) = 2 ("Delete”) is used

• to delete a specified price level.

Note: All price levels greater than the deleted one should be decremented. Price and quantity

of the price level to be deleted is also sent within the message and can be used as a

consistency check.

Example: Deletion of limit order modified above:

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1070

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 2 Delete

269 > MDEntryType 0 Bid

48 > SecurityID 8852 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 58.22 Price

271 > MDEntrySize 8 Quantity

1023 > MDPriceLevel 1 Book level

273 > MDEntryTime t2 official time of book entry

Table 8: MDUpdateAction “Delete”

 4.1.5 Deletion of multiple price levels from a given price level onwards

A depth incremental message with MDUpdateAction (279) = 4 ("Delete From”)
is used to

• Delete all price levels ≥ specified price level.

Note: All price levels from the specified one and up to the maximum need to be deleted.

Example: Deletion of all orders for SecurityID = 8852, MarketSegmentID = 89 from level 3

and above:

MCX Trading Market Data Interface
Version 1.6

27 Confidential

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1068

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 4 Delete From

269 > MDEntryType 0 Bid

48 > SecurityID 8852 Identifier assigned to each instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 58.19 Price

271 > MDEntrySize 13 Quantity

1023 > MDPriceLevel 3 Book level

273 > MDEntryTime t3 official time of book entry

Table 9: MDUpdateAction “Delete From”

 4.1.6 Deletion of multiple price levels up to a given price level

A depth incremental message with MDUpdateAction (279) = 3 ("Delete Thru”) is used to

• Delete all price levels from 1 to the specified price level.

Note: All higher than the specified price levels are shifted down to fill the gap of the deleted

price levels.

Example: Deletion of all price levels from 1 to price level 3.

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1068

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 3 Delete Thru

MCX Trading Market Data Interface
Version 1.6

28 Confidential

269 > MDEntryType 0 Bid

48 > SecurityID 8852 Unique identifier assigned to each

instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 58.22 Price on level 3

271 > MDEntrySize 10 Quantity

346 > NumberOfOrders 1 Number of order/quotes on this level

1023 > MDPriceLevel 3 Book level

273 > MDEntryTime t4 official time of book entry

Table 10: MDUpdateAction “Delete Thru”

 4.2 Trade Volume Reporting (T7 EMDI)

All on-exchange trades executed on T7 are reported via depth incremental messages. The

depth snapshot messages contain statistical information about trades only. Trades can be

identified in the incremental messages when MDEntryType is set to 2 (Trade).

The T7 EMDI disseminates information about on book trades and set MDOriginType(1024)

is set to Book.

When an order executes against the book at multiple price levels, this is reflected by a

matching event with multiple match steps. Each match step has the trades at one price

level and is represented by a unique MDEntryID (278) and published in the market data.

The field MDEntryID (278) is a unique id on product level and origin type for each business

day.

 4.2.1 Use case 1: Direct match of simple instruments

An incoming simple order is matched against two orders of the opposite side of the order

book on different price levels.

Incoming buy order, 10@85,

BMW Existing Order book:

Bid Ask

5@84.9

5@85

Trade Volume Reporting: Two trades are reported because two different price levels are

involved in the matching process: First 5@84.9 gets reported due to a higher matching priority

of this price level; afterwards 5@85.

Instr. MDEntryID MDUpdateAction size@prc TradeCond. AggrSide #Buy #Sell

Inst1 1 NEW 5@84.9 U,R,AX,AY BUY 1 1

Inst1 2 NEW 5@85 U,AX BUY 1 1

with:

U = Exchange last

R = Opening price

AX = High price

AY = Low price

MCX Trading Market Data Interface
Version 1.6

29 Confidential

 4.2.2 Use case 2: Self-Match prevention (order is totally cancelled)

An incoming order is cancelled due to Self-Match prevention.

Incoming buy order, 150@84, Inst1 Mar, PANID1=, Member A Existing Order book:

Bid Ask

 50@84

(PANID1=, Member

A)

Trade Volume Reporting: A trade is reported: 0@84, AggressorSide BUY. MDEntryID,

TradeCondition, number of Buy and number of Sell orders are not filled. The resting cancelled

quantity is 50. The incoming cancelled quantity (150) is not reported.

Instr. MDEntryID MDUpdateAction size@prc TradeCond. AggrSide #Buy #Sell #RestingCxlQty

Inst1 NEW 0@84 BUY 50

 4.2.3 Use case 3: Self-Match prevention (order is partially cancelled)

An incoming order is partially cancelled due to Self-Match

prevention. Incoming buy order, 150@84, Inst1, PANID1, Member

A Existing Order book:

Bid Ask

 20@84

(MatchInstCrossID=1,

Member A)

 30@84

(MatchInstCrossID=0)

Trade Volume Reporting: A trade is reported: 30@84, AggressorSide BUY. The resting cancelled

quantity is 20.The incoming cancelled quantity (120) is not reported.

Instr. MDEntryID MDUpdateAction size@prc TradeCond. AggrSide #Buy #Sell #RestingCxlQty

Inst1 1 NEW 30@84 U BUY 1 1 20

 4.3 Trade Volume Reporting (T7 MDI)

The T7 MDI only provides statistical data (daily high/low price as well as total trade volume)

for trades as well as the last traded price and quantity. For each simple instrument

participating in a trade, T7 MDI reports the total traded volume even when there are no

simple instrument orders involved in the trade.

5 Recovery

Due to the unreliable nature of UDP multicast it is possible that some packets may either be

delayed, arrive in the incorrect order or even be missing. Furthermore the UDP packets may be

duplicated at the network level. Receiving applications need to be capable of handling these

issues. This chapter describes the scenarios which might occur and provides a guideline on how

a receiving application needs to react to those scenarios.

Recovery actions are possible on a packet level by using the respective other service (A or B). In

case a packet is lost on both services (A and B) clients can create a new current order book by

using snapshot information.

5.1 Detecting duplicates and gaps by means of the packet header

The important function of the packet header is to identify gaps by means of the PacketSeqNum

which can be retrieved just by decoding the packet header.

MCX Trading Market Data Interface
Version 1.6

30 Confidential

Note: Packets with the same SenderCompID (field length: 1 Byte) have contiguous sequence

numbers per multicast address / port combination.

This means that field PacketSeqNum can be used not only to detect duplicates but also to detect

missing packets. PacketSeqNum is a Byte vector and therefore not stop bit encoded as per the

FAST specification.

The packet header itself does not contain any product information. In order to find out which

product is missing, the product level sequence number must be used in addition to the packet

level sequence number; the packet needs to be decoded further down to the message level. This

leaves participants with two recovery options when a gap in the PacketSeqNum’s of the packet

header is detected.

Example:

A single multicast address carries products FGOLD and FSILVER, but the participant is only

interested in FGOLD.

I. Pessimistic approach: The receiving application assumes that FGOLD is part of the missing

packet: It immediately starts recovery actions just by decoding the packet header.

• Advantage: Recovery is triggered immediately when observing a missing PacketSeqNum

without decoding the entire message.

• Disadvantage: The recovery might not be necessary, if FGOLD is not part of the message

which is inside the lost packet.

II. Optimistic approach: The receiving application assumes that FGOLD is not part of

the missing packet: It waits for the next message on the same service and decodes the packet

up to the message level to find out if a packet for FGOLD has been lost before triggering recovery

actions.

• Advantage: This approach allows the participant to recover only products of interest.

• Disadvantage: The receiving application needs to wait for the next message. However, the

next packet may not contain a message for the product in question.

MCX Trading Market Data Interface
Version 1.6

31 Confidential

5.2 Delayed packets

The following example indicates a simple case:

Time MsgSeqNum Message

10:30:00 132 New 151@4

10:30:04 133 Delete 151@5

10:30:39 134 New 152@4

Table 11: Packets arriving in correct sequence

In this example, messages arrive in the correct order. The message was not delayed between

T7 and the receiving application. There is no special requirement on the application; the message

can be processed in the same order as they arrive.

Multicast does not guarantee that the order in which packets are received is the same as the

order in which they are sent. For instance, T7 Market Data Interface sends incremental messages

in ascending MsgSeqNum order, but they might arrive in an incorrect order at the receiving

application.

Consider the following example:

Time MsgSeqNum Message

10:30:00 206 New 151@4

10:30:04 208 Delete 151@5

10:30:10 207 New 152@4

Table 12: Delayed Packet 207

In this example, message 207 is delayed within the network, allowing message 208 to arrive first.

A correct communications layer responds as follows:

1. Release message 206 to the application immediately on arrival.

2. On arrival of 208, recognises that 207 is missing.

3. Start an appropriate timed operation to trigger the recovery actions if the out-of-sequence

message 207 fails to arrive in a reasonable time.

4. Assuming that 207 arrives within that reasonable time, release 207 and then 208 to the

application in that order and cancel the timed recovery action.

 5.3 Missing packets

All lost packets start life as “delayed” packets, as illustrated in the preceding case. The

communications layer of the receiving application is responsible for deciding when to declare a

network packet as lost. In the following example it is assumed that MsgSeqNum = 207 from the

example above does not arrive within the allowed time. Therefore it is considered as lost:

Time MsgSeqNum Message

10:30:00 206 New 151@4

 lost

MCX Trading Market Data Interface
Version 1.6

32 Confidential

Time MsgSeqNum Message

10:30:04 208 Delete 151@5

10:30:10 209 New 152@4

Table 11: Missing seqNum 207

The correct behaviour in this instance is:

1. Release message 206 immediately on arrival.

2. Hold on to 208 because it is out-of-sequence, and initiate timer-based recovery actions.

3. Hold on to 209 for the same reason. Timer-based recovery actions are already pending for

this product, so do not reset the timer.

(a) Even though message 209 is a “New” operation, it may be unsafe to apply 208 and 209

because we do not know what 207 contains.

4. If the missing message (207) fails to arrive within the allowed time: then initiate recovery via

snapshots.

 5.3.1 Recovery (T7 EMDI)

Depth snapshot and depth incremental messages are distributed via separate channels for

the EMDI. For instance, depth incremental messages could be sent on multicast address A2
I,

port x and the snapshot message on multicast address A2
S with port y.

Incrementals are sent whenever there is a change of the order book (event-driven); snapshots

are sent periodically in intervals regardless of whether the order book has changed since the

last snapshot (timedriven).

Each message sequence number (field: MsgSeqNum) on the market data incremental feed is

unique and contiguous by product across messages. Therefore the sequence number can be

used to detect losses. If any gap of the arriving sequence numbers is detected and this gap

cannot be filled by using the respective other service (A or B) the receiving application should

initiate a snapshot recovery.

The following example shows missing depth incremental messages (MsgSeqNum’s 208-209)

and depth snapshots (with LastMsgSeqNumProcessed) which relate to the missing message.

MsgSeqNum’s for the depth snapshot do not exist, which is indicated with “N/A” in the table.

MsgSeqNum Product LastMsgSeq-

NumProcessed

Message Type Channel

205 A quote request A1I

206 A depth incremental A1I

207 A depth incremental A1I

lost A depth incremental A1I

lost A depth incremental A1I

210 A depth incremental A1I

MCX Trading Market Data Interface
Version 1.6

33 Confidential

MsgSeqNum Product LastMsgSeq-

NumProcessed

Message Type Channel

1000 B depth incremental A2I

N/A A 209 depth snapshot A1S

211 A depth incremental A1I

N/A B 1000 depth snapshot A2S

1001 B depth incremental A2I

Table 12: Snapshots and incrementals within the T7 EMDI

The appropriate recovery action for missing depth incrementals is the same as the logic

described in section Build the initial order book with the T7 EMDI.

There are some additional points to be aware of when performing recovery:

• During recovery, applications should be prepared to receive depth incremental messages

for instruments they didn’t know existed. This can occur if a strategy creation event (via a

complex instrument update on the market data feed) is missed due to packet loss. In this

case, applications must consult the reference data snapshot feed to obtain the strategy

description.

• Depth snapshot messages are not sequenced, but they are still theoretically subject to out-

of-order packet delivery. Applications must consider this in determining that their snapshot

cycle is complete. The packet sequence number in the packet header can be used to

detect out-of-order delivery.

• The LastMsgSeqNumProcessed (369) is not necessarily the same for all instruments

belonging to a product on the market data snapshot feed.

Note: The market data snapshot feed does not contain any “start” or “end” messages to

delineate the cycle.

There are two ways to determine when to leave the snapshot feed during recovery:

5.3.1.1 Method 1: Process specific products

For each SenderCompID (49) contributing to the market data snapshot feed, depth snapshot messages

are grouped by product as illustrated below:

P1I1 | P1I2 | P1I3 | P1In | P2I1 | P2I2 | P2I3 | P2In | P3I1 | P3I2 | P3I3 |

P3Iq | [...] with: Pn: Product n

Iq: Simple, or complex instrument q for product n

Depth snapshots for instruments in the same product will often all appear in the same packet, but this

should not be relied upon as it is not true when the amount of data is simply too great to fit into a single

packet, and under certain other technical conditions on the exchange.

A change of product MarketSegmentID (1300) for a given SenderCompID (49) indicates the end of the

depth snapshot messages for the respective product. This allows applications to easily determine when

MCX Trading Market Data Interface
Version 1.6

34 Confidential

they’ve received a snapshot for every instrument in the products they’re interested in and leave the

snapshot feed.

5.3.1.2 Method 2: Process an entire depth snapshot cycle

It’s also easy for an application to listen to an entire snapshot cycle.

Applications can determine when they’ve seen an entire snapshot cycle simply by remembering the

SecurityID (48) of the first depth snapshot message they saw from each SenderCompID (49).

When they see the same SecurityID (48) again for each SenderCompID (49), they know that a complete

depth cycle has been seen and can leave the snapshot feed.

Note: Receiving applications also need to consider depth snapshot messages for newly created

complex instruments.

Note: If a failover occurs during snapshot processing the SenderCompID (49) for the affected

partition changes and the snapshot cycle for that partition starts again.

 5.3.2 Recovery (T7 MDI)

Snapshot and incremental messages are sent on the same channel and carry a contiguous

sequence number (field: MsgSeqNum) per product. The snapshot always carries the latest

information and might carry new information, not already sent with an incremental message.

The following table shows an example for the distribution of incremental and snapshot

messages for two products:

MsgSeqNum Product Message Type Channel

5 A quote request A1S,I

6 A depth incremental A1S,I

lost A depth incremental A1S,I

25 B depth incremental A2S,I

8 A depth incremental A1S,I

9 A depth snapshot A1S,I

10 A depth snapshot A1S,I

11 A depth incremental A1S,I

26 B depth snapshot A2S,I

27 B depth incremental A2S,I

Table 13: Snapshots and incrementals within the T7 MDI

If the depth incremental message for product A with MsgSeqNum = 7 is lost, a consistent order book

can be rebuilt from the next snapshot message for product A, in this case arriving with MsgSeqNum=9.

All depth incremental messages for product A with a lower sequence number than the next market data

snapshot message for product A must be discarded, e.g. MsgSeqNum = 8 (incremental) must be

discarded as its effect is included in MsgSeqNum = 9 (snapshot).

MCX Trading Market Data Interface
Version 1.6

35 Confidential

Since multicast doesn’t guarantee the correct sequence of the incoming message, it is recommended

to buffer all incoming incrementals while waiting for the next snapshot message. The buffered

incrementals for product A with MsgSeqNum ≥11 can be applied to the latest snapshot with

MsgSeqNum = 10.

Note: LastMsgSeqNumProcessed is not necessary for recovery purposes in the T7 MDI.

6 Detailed data feed description and layout

This chapter provides message layouts and field information. It is structured by service

messages, data messages and data files.

Please consider, that the following tables will only list valid values for enum and set data types,

which are used within that specific context.

6.1 Service messages

Service messages do not carry any market information. These messages are sent for the purpose

of synchronization or to indicate the status of the service.

6.1.1 FAST reset message

The template with ID = 120 is not included in the “FAST Message Templates” file. This TID is

reserved in the main FAST specification and allocated by the FAST Session Control Protocol

specification (SCP 1.1)

Note: A conforming decoder must be able to deal with the FAST reset message even though

it is not mentioned in the template file. Once the FAST reset message is sent out, the

dictionary needs to be initialized.

6.1.2 Packet header (T7 EMDI)

6.1.2.1 Delivered in: Every UDP-datagram

The packet header is a technical header used for identification of datagrams and is sent on a

channel basis. Every partition stamps outgoing datagrams with a sequence number (field:

PacketSeqNum).

One method to identify duplicates between Service A and B is by the use of the field

PacketSeqNum which is unique per senderCompID; a faster way is to perform a memory

comparison on the first 9 bytes of the packet header.

This method eliminates the need to even decode the header in order to determine, if it has

already been processed. This is especially useful to applications using both Service A and

Service B feeds, allowing them to determine that a packet has already been processed without

incurring any decoding overhead at all.

As the packet header message is not defined in the FIX standard, the FIX Tags for

PacketSeqNumber, SendingTime and PerformanceIndicator are not shown in the table below.

The following layout is available after FAST decoding of the packet header:

Field Name Data

Type

Description

PartitionID uInt32 Sending partition.

SenderCompID uInt32 Unique id for a sender.

MCX Trading Market Data Interface
Version 1.6

36 Confidential

Field Name Data

Type

Description

PacketSeqNumber byte

vector

Datagram sequence number.

SendingTime byte

vector

Time when market data feed handler writes packet on the wire.

PerformanceIndicator byte

vector

Not used

The following picture shows the structure of the packet header before FAST-decoding :

Figure 7: Structure of the packet header for T7 EMDI

The last three fields are byte vectors with fixed length. Byte vectors are not stop bit encoded according

to the FAST standard. Each of them are preceded by a FAST encoded 1 Byte length field as per the

FAST specification for byte vector fields.

Note: The field PerformanceIndicator including the length field is only available in messages on the

T7 EMDI incremental feed. The PartitionID is available in messages on both incremental and snapshot

feed of the T7 EMDI.

6.1.3 Packet header (T7 MDI)

Delivered in every UDP-datagram

The packet header of T7 MDI contain following fields.

Field Name Data Type Description

SenderCompID uInt32 Unique id for a sender

PacketSeqNumber byte vector Datagram sequence number

SendingTime byte vector Time when market data feed handler writes packet on

the wire.

Wire representation:

Figure 8: Structure of the packet header for T7 MDII

MCX Trading Market Data Interface
Version 1.6

37 Confidential

6.1.4 Functional beacon message

6.1.4.1 Delivered on: T7 EMDI incremental

The functional beacon message is sent as a “line active” indicator whenever there are no

messages generated on the EMDI incremental feed for the respective product within the last

10 seconds in production.

Functional beacons are sent once the market data service becomes available. If no messages

have been sent on the incremental feed for a product then LastMsgSeqNumProcessed (369)

is set to zero.

Tag Field Name Req’d Data

Type

Description

35 MsgType Y string

Value Description

0 Beacon

49 SenderCompID Y uInt32 Unique id of a sender.

50 SenderSubID Y uInt32 Product Identifier, e.g. 89, for EMDI or

Market Identifier

369 LastMsgSeqNum-

Processed

Y uInt32 Last sequence number on the incremental

feed for this SenderSubID.

6.1.5 Technical heartbeat message

Delivered on: every channel for T7 EMDI, T7 MDI

The technical heartbeat (also called technical beacon) message is sent out periodically on

every multicast address and consists of a FAST reset message (TID=120) only. The sole

purpose of the technical heartbeat message is to keep routing trees alive, i.e. this message

prevents routers from dropping multicast packages.

6.2 Market data messages

The market data feeds disperse public market data via the T7 EMDI and the T7 MDI.

Public market data for all instruments are distributed over preconfigured multicast addresses. It

is possible to configure multiple instruments over one multicast address and the depth of

information to be disseminated can be configured on a per product basis. The multicast address

and port combinations are different for the T7 EMDI and the T7 MDI.

Two different messages are used for order book updates: The depth incremental is sent if the

order book changes (driven by an order book event). Conversely, the depth snapshot is sent in

certain intervals independent from any change in the order book (time driven).

The message layout for the T7 EMDI and T7 MDI is the same.

6.2.1Depth snapshot message

Delivered on: T7 EMDI snapshot feed, T7 MDI data feed

This message provides periodic updates for orders and trades independent from any change

of the order book. Updates are available up to the maximum depth defined by the exchange

in the field MarketDepth (264). The Snapshot can be synchronized with the incremental

message Update the order book. One message per instrument with pre- and post trade data

is sent. An empty book is disseminated during the product states as indicated in chapter -

General order book rules and mechanics

MCX Trading Market Data Interface
Version 1.6

38 Confidential

Tag Field Name Req’

d

Data Type Description

35 MsgType Y string

Value Description

W Market Data Snapshot

Full Refresh

34 MsgSeqNum N uInt32 Not used by unnetted feed (EMDI)

where field is never present. The

sequence number of the message

is incremented per product across

all message types.

49 SenderCompID Y uInt32 Unique id of a sender.

369 LastMsgSeqNumProcess

ed

N uInt32 Not used by netted feed (MDI)

where field is never present. Last

message sequence number sent

regardless of message type.

1187 RefreshIndicator N Refresh-

Indicator

(enum)

Used by netted feed (MDI) only. If

set, then the depth snapshot

information has not been sent with

the depth incremental before.

Value Description

Y Mandatory Refresh

N Optional Refresh

1300 MarketSegmentID Y uInt32 Product identifier, e.g. "89".

48 SecurityID Y int64 Instrument identifier, e.g. "8852".

22 SecurityIDSource Y String Source Identification.

Value Description

M Marketplace-assigned

Identifier

122

7

ProductComplex Y ProductCompl
ex
(enum)

Type of Instrument

Value Description

1 Simple Instrument

5 Futures Spread

965 SecurityStatus Y Security-

Status

(enum)

Status of the instrument.

2 = Inactive will be set for pending
deletions of complex instruments.

4 = Expired will be set for
instruments that have expired
intraday.

Value Description

1 Active

MCX Trading Market Data Interface
Version 1.6

39 Confidential

Tag Field Name Req’

d

Data Type Description

2 Inactive

4 Expired

9 Suspended

Tag Field Name Req’d Data Type Description

25045 TESSecurityStatus N Security-

Status

(enum)

Not used.

779 LastUpdateTime Y timestamp Time of last change for SecurityID

(nanoseconds).

This can be any trade, change of the

orderbook on any price level, or also a

product or instrument state change

information conveyed in this message.

134 TotalBuyQuantity N decimal Total Buy Quantity

135 TotalSellQuantity N decimal Total Sell Quantity

<MDSshGrp> sequence starts

1024 > MDOriginType Y MDOrigin-

Type

(enum)

= Book is for on-exchange trading.

MCX Trading Market Data Interface
Version 1.6

40 Confidential

Tag Field Name Req’d Data Type Description

269 > MDEntryType Y MDEntry-

Type

(enum)

J = Empty Book is sent during product
states “Start-Of-Day” or when no price
levels exist. During “PostTrading“ and “End-
Of-Day“ ToB prices are distributed.

B = Trade Volume The total traded volume
of units traded during the day can be found
in the MDEntrySize field. Please note that
the total traded volume may include
coherent volume (from direct matching of
complex instruments) as well.

S = Spot price, MDEntryPX and
MDEntryTime are filled

Value Description

0 Bid

1 Offer

2 Trade

7 Upper Circuit Limit

8 Lower Circuit Limit

J Empty Book

Q Auction Clearing Price

(NotUsed)

B Trade Volume

A Imbalance (Not used)

C Open Interest

S Spot Price

Tag Field Name Req’

d

Data Type Description

1021 > MDBookType N MDBook-

Type

(enum)

Price depth information

Value Description

2 Price Depth

1173 > MDSubBookType N MDSubBook-

Type

(enum)

Not used

828 > TrdType N TrdType 5(enum) Not used

336 > TradingSessionID N TradingSessionI
D
(enum)

Always attached to the first MDEntry.

Value Description

MCX Trading Market Data Interface
Version 1.6

41 Confidential

Tag Field Name Req’

d

Data Type Description

1 Day

3 Morning

5 Evening

6 After-Hours

7 Holiday

625 >

TradingSessionSubI

D

N TradingSession-
SubID

(enum)

See description for TradingSessionID

(336).

Value Description

1 Pre-Trading

3 Continuous

4 Closing

5 Post-Trading

7 Quiescent

2504

4

> TESTradSesStatus N TradSes-Status

(enum)

Not used

326 >

SecurityTradingStatu

s

N Security-

Trading-

Status

(enum)

See description for TradingSessionID

(336).

Trading status of an instrument.

2 = Trading Halt,

Value Description

2 Trading Halt

200 Closed

201 Restricted

202 Book

203 Continuous

Tag Field Name Req’

d

Data Type Description

2705 > MarketCondition N MarketCondition
(enum)

Indicator for stressed market conditions.

Value Description

0 Normal

2447 >

FastMarketIndicator

N FastMarketIndicat
or
(enum)

Not used

MCX Trading Market Data Interface
Version 1.6

42 Confidential

Tag Field Name Req’

d

Data Type Description

1174 >

SecurityTradingEve

nt

N Security-Trading-

Event

(enum)

Not used

2887

2

> PotentialSecurity-

TradingEvent

N Security-Trading-

Event(enum)

Not used

2515

5

> SoldOutIndicator N Sold-Out-Indicator

(enum)

Not used

277 > TradeCondition N Trade-

Condition

(set)

Value Description

U Exchange Last

R Opening Price

AX High Price

AY Low Price

AJ Closing Price

BD Previous Closing Price

AU Life High

AV Life Low

442 >MultiLegReporting

Type

N MultiLeg-

Reporting-

Type(enum)

Not used

2875

0

>MultiLegPriceMod

el

N MultiLeg-

PriceModel

(enum)

Not used

276 > QuoteCondition N QuoteCondition
(enum)

Not used

270 > MDEntryPx N decimal Price.

Tag Field Name Req’d Data Type Description

271 > MDEntrySize N decimal

346 > NumberOfOrders N uInt32

1023 > MDPriceLevel N uInt32 Book level.

273 > MDEntryTime N Timestamp Time of entry in nanoseconds

for last trade entry

Statistics do not have an official

timestamp in the snapshot,

even if they happen to be

identical to the last trade and be

part of the same entry.

28873 >NonDisclosedTradeVolume N Decimal Not used

MCX Trading Market Data Interface
Version 1.6

43 Confidential

Tag Field Name Req’d Data Type Description

381 >TotalTradedValue N Decimal Total Traded Value(In Lacs)

 426 AverageTradedPrice N Decimal Average Traded Price

6139 > TotalNumberOfTrades N uInt32 Total Number of trades during

the day. Only present for

MDEntryType = B. Applicable

for cash market products only.

<MDSshGrp> sequence ends

6.3 Depth incremental message

6.3.1 Delivered on: T7 EMDI incremental feed, T7 MDI data feed

This message provides order book updates and trades. Order book updates are available during

Trading and Fast Trading states.

Tag Field Name Req’

d

Data Type Description

35 MsgType Y String

Value Description

X

Market Data

Incremental

Refresh

34 MsgSeqNum Y uInt32

The sequence number is

incremented per product across all

message types on a particular

feed.

49 SenderCompID Y uInt32 Unique id of a sender.

1300 MarketSegmentID Y uInt32 Product identifier, e.g. "89".

<MDIncGrp> sequence starts

268 NoMDEntries Y length

1024 > MDOriginType Y MDOrigin-

Type

(enum)

0 = Book is for on-exchange

trading.

279 > MDUpdateAction Y MDUpdate-

Action

(enum)

Value Description

0 New

1 Change

2 Delete

3 Delete Thru

4 Delete From

5 Overlay

MCX Trading Market Data Interface
Version 1.6

44 Confidential

Tag Field Name Req’

d

Data Type Description

269 > MDEntryType Y MDEntry-

Type

(enum)

See Depth snapshot message.

B = Trade Volume Trade volume

entry for MDI, to provide new total

trade volume from the last netting

interval. Also used in EMDI for

recovery purposes after a failover

on the exchange side. In this case,

the total traded volume of units

traded during the day can be found

in the MDEntrySize field.

S = In case of Spot price,

MDEntryPx and MDEntry Time

Value Description

0 Bid

1 Offer

2 Trade

7 Upper Circuit Limit

8 Lower Circuit Limit

Q
Auction Clearing

Price (Not used)

B Trade Volume

A
Imbalance (Not

used)

C Open Interest

S Spot Price

48 > SecurityID Y int64 Instrument identifier, e.g. "8852".

22 > SecurityIDSource Y string Source Identification.

Value Description

M
Marketplace-

assigned Identifier

270 > MDEntryPx N decimal Price of market data (trade or

order).

271 > MDEntrySize N decimal Quantity or trade volume when

MDEntryType = 2 or "B".

346 > NumberOfOrders N uInt32

1023 > MDPriceLevel N uInt32 Book level.

273 > MDEntryTime N timestamp For bids and offers the official time

of book entry, for trades official

time of execution (all in

nanoseconds).

MCX Trading Market Data Interface
Version 1.6

45 Confidential

Tag Field Name Req’

d

Data Type Description

2887

2

> PotentialSecurity-

TradingEvent

N Security-

Trading-

Event (enum)

Not used

276 > QuoteCondition N QuoteCondition
(enum)

Not used

 134 > TotalBuyQuantity N decimal

Total Buy Quantity

 135 > TotalSellQuantity N decimal

Total Sell Quantity

<TradeEntryGrp> (optional) group starts

828 > TrdType N TrdType

(enum)

Not used

2667 > AlgorithmicTrade-

Indicator

N Algorithmic-

TradeIndicat
or

(enum)

Not used

277 > TradeCondition

N Trade-

Condition

(set)

Defines the type of price for

MDEntryPx. Only present for

MDEntryType 2 = Trade.

Value Description

U Exchange Last

R Opening Price

AX High Price

AY Low Price

AJ Official Closing Price

BD Previous Closing Price

AU Life High

AV Life Low

442 > MultiLegReportingType N MultiLeg-

Reporting-

Type

(enum)

Not used

28750 > MultiLegPriceModel N MultiLeg-

PriceModel

(enum)

Not used

2445 > AggressorTime N timestamp Not used

5979 > Reserve N timestamp Not used

MCX Trading Market Data Interface
Version 1.6

46 Confidential

Tag Field Name Req’

d

Data Type Description

2446 > AggressorSide N Aggressor-

Side

(enum)

Side of the incoming order that

triggered the trade. Only present

for MDEntryType=2.

Value Description

1 Buy

2 Sell

2449 > NumberOfBuyOrders N uInt32 Number of buy orders involved in

the trade. Only present for

MDEntryType=2 and Trade

Condition other than "a" (Volume

Only).

2450 > NumberOfSellOrders N uInt32 Number of sell orders involved in

the trade. Only present for

MDEntryType=2 and Trade

Condition other than "a" (Volume

Only).

6139 > TotalNumberOfTrades N uInt32 Total Number of trades during

the day. Only present for

MDEntryType=2. Applicable for

cash market products only.

2886

9

> RestingCxlQty N decimal Quantity that was cancelled due

to SMP. Only present for

MDEntryType=2.

278 > MDEntryID N uInt32 Represents the match step ID.

This field is unique together with

MarketSegmentID. Only present

for MDEntryType = 2.

2887

3

>NonDisclosedTradeVol

ume

N decimal Not used

381 >TotalTradedValue N Decimal Total Traded Value(In Lacs)

 426 >AverageTradedPrice N Decimal Average Traded Price

<TradeEntryGrp> (optional) group ends

<MDIncGrp> sequence ends

 6.4 Product State Change

6.4.1 Delivered on: T7 EMDI incremental feed, T7 MDI data feed

The product state change message provides permanent updates on the trading state for a

particular product.

Ta

g

Field Name Req’

d

Data Type Description

35 MsgType Y string

Value Description

MCX Trading Market Data Interface
Version 1.6

47 Confidential

Ta

g

Field Name Req’

d

Data Type Description

h Trading Session Status

34 MsgSeqNum Y uInt32

The sequence number is incremented

per product across all message types

on a particular feed.

49 SenderCompID Y uInt32 Unique id of a sender.

130

0

MarketSegmentID Y uInt32 Product identifier, e.g. "89".

336 TradingSessionID Y TradingSessionID
(enum)

Value Description

1 Day

3 Morning

5 Evening

6 After-Hours

7 Holiday

625 TradingSessionSub

ID

Y TradingSession-
SubID

(enum)

Value Description

1 Pre-Trading

3 Continuous

4 Closing

5 Post-Trading

340 TradSesStatus Y TradSes-

Status

(enum)

Value Description

1 Halted

2 Open

3 Closed

270

5

MarketCondition N MarketCondition
(enum)

Value Description

0 Normal

244

7

FastMarketIndicator Y FastMarketIndicat
or
(enum)

Not used

60 TransactTime Y timestamp Time in nano seconds,indicates the time when

the message was sent.

MCX Trading Market Data Interface
Version 1.6

48 Confidential

Ta

g

Field Name Req’

d

Data Type Description

2504

4

TESTradSesStatus N TradSes-Status

(enum)

Not used

6.5 Mass instrument state change message

Delivered on: T7 EMDI incremental feed, T7 MDI data feed

The mass instrument state change message provides the state information for all instruments of

a certain instrument type within a product. Where not all indicated instruments are affected by

the new state, the exception list (SecurityTradingStatus (326)) is populated with one entry for

each such instrument.

A state change affecting a single instrument (such as an intraday expiration) does not trigger a

mass instrument state change.

Tag Field Name Req’

d

Data Type Description

35 MsgType Y string

Value Description

CO Security Mass Status

34 MsgSeqNum Y uInt32 The sequence number is

incremented per product across all

message types on a particular

feed.

49 SenderCompID Y uInt32 Unique id of a sender.

1300 MarketSegmentID Y uInt32 Product identifier, e.g. "89".

1544 InstrumentScopeProd

uct-

Complex

Y Instrument-

ScopeProductCo
mplex
(enum)

Instrument type of affected

instruments.

Value Description

1 Simple Instrument

5 Futures Spread

30965 SecurityMassStatus Y Security-Status

 (enum)

The instrument status of all

affected instruments.

Value Description

1 Active

2 Inactive

4 Expired

9 Suspended

MCX Trading Market Data Interface
Version 1.6

49 Confidential

Tag Field Name Req’

d

Data Type Description

1679 SecurityMassTrading

Status

N Security-Trading-

Status(enum)

See SecurityTradingStatus in

Depth snapshot

Value Description

2 Trading Halt

200 Closed

201 Restricted (PreOpen)

203 Continuous

28894 MassMarketCondition Y MarketCondition
(enum)

See Depth snapshot message

Value Description

0 Normal

2447 FastMarketIndicator Y FastMarketIndicat
or
(enum)

Not used

1680 Security-

MassTradingEvent

N Security-Trading-

Event (enum)

Not used

35155 MassSoldOutIndicator N Sold-Out-Indicator

(enum)

Not used

60 TransactTime Y timestamp Time when request was processed

(nanoseconds).

35045 TESSecurityMassStat

us

N Security-Status

(enum)

Not used

<SecMassStatGrp> sequence starts

146 NoRelatedSym N length

48 > SecurityID Y int64 Instrument identifier, e.g. "8852".

22 > SecurityIDSource Y string

Value Description

M Marketplace-assigned

Identifier

965 > SecurityStatus Y Security-

Status

(enum)

See Depth snapshot message

Value Description

1 Active

2 Inactive

4 Expired

9 Suspended

MCX Trading Market Data Interface
Version 1.6

50 Confidential

Tag Field Name Req’

d

Data Type Description

326 >

SecurityTradingStatus

N Security-

Trading-

Status

(enum)

See Depth snapshot message

Empty for flexible instruments.

Value Description

2 Trading Halt

200 Closed

201 Restricted

203 Continuous

270

5

> MarketCondition Y MarketCondition
(enum)

See Depth snapshot message

Value Description

0 Normal

117

4

>

SecurityTradingEvent

N Security-Trading-

Event(enum)

Not used

251

55

> SoldOutIndicator N Sold-Out-Indicator

(enum)

Not used

250

45

> TESSecurityStatus N Security-Status

(enum)

Not used

<SecMassStatGrp> sequence ends

893 LastFragment Y LastFragment
(enum)

Indicates whether this message is

the last in a sequence of messages

that together convey a joint

exception list of SecMassStatGrp.

All messages up to the last with

LastFragment = Y share the same

root level content and an

application first needs to combine

all single exception lists before the

Mass State Change message

could be applied with the fully joint

exception list

Value Description

N Not Last Message

Y Last Message

MCX Trading Market Data Interface
Version 1.6

51 Confidential

6.6 Index Stats message

Delivered on: T7 EMDI incremental feed, T7 MDI data feed

This message provides information for the current and index related statistics. The message is

complete each time it is delivered and thus does not require recovery.

Tag Field Name Req’d Data Type Description

35 MsgType Y String

Value Description

I Index broadcast

34 MsgSeqNum Y uInt32 The sequence number is incremented

per product across all message types on

a particular feed.

49 SenderCompID Y uInt32 Unique id of a sender.

1300 MarketSegmentID Y uIDepth

nt32

Index code

40001 IndexHigh Y Decimal High value

40002 IndexLow Y Decimal Low value

40003 IndexOpen Y Decimal Open Value

40004 IndexClose Y Decimal Close Value

40005 IndexValue Y Decimal Current Index Value

40006 LifeHigh Y Decimal The highest price during the lifetime of a

particular contract.

40007 LifeLow

Y Decimal The lowest price during the lifetime of a

particular contract.

40008 52WeekHigh Y Decimal The highest price over the period of past

52 weeks

40009 52WeekLow Y Decimal The lowest price over the period of past

52 weeks

400010 closeIndexFlag Y Decimal If the closeIndexFlag is true then in

CloseIndex field we receive index close

value and if it is false then we receive

PreviousCloseIndex value

 60 TransactTime Y Timestamp Time when index value is last updated in

nanosec

MCX Trading Market Data Interface
Version 1.6

52 Confidential

6.7 Instrument state change message

Delivered on: T7 EMDI incremental feed, T7 MDI data feed

The instrument state change message provides state information for a single instrument. It also

informs participants about intraday expirations of instruments. In that case the field

SecurityStatus (965) is set to 4 = Expired.

Tag Field Name Req’d Data Type Description

35 MsgType Y string

Value Description

f Security Status

34 MsgSeqNum Y uInt32 The sequence number is incremented

per product across all message types

on a particular feed.

49 SenderCompID Y uInt32 Unique id of a sender.

1300 MarketSegmentID Y uInt32 Product identifier, e.g. "89".

48 SecurityID Y int64 Instrument identifier, e.g. "8852".

22 SecurityIDSource Y string

Value Description

M Marketplace-assigned

identifier

965 SecurityStatus Y

Security-

Status

(enum)

See Depth snapshot message

Value Description

1 Active

2 Inactive

4 Expired

9 Suspended

326 SecurityTradingStat

us

N Security-

Trading-

Status (enum)

See Depth snapshot message

Empty for flexible instruments.

Value Description

2 Trading Halt

200 Closed

201 Restricted

202 Book

203 Continuous

2705 MarketCondition Y MarketConditio
n
(enum)

See Depth snapshot message

Value Description

0 Normal

MCX Trading Market Data Interface
Version 1.6

53 Confidential

Tag Field Name Req’d Data Type Description

2447 FastMarketIndicator Y FastMarketIndi
cator
(enum)

Not used

1174 SecurityTradingEve

nt

N Security-

Trading-

Event (enum)

Not used

25155 SoldOutIndicator N Sold

OutIndicator

(enum)

Not used

60 TransactTime Y timestamp Time when request was processed

(nanoseconds).

2504

5

TESSecurityStatus N Security-

Status

(enum)

Not used

MCX Trading Market Data Interface
Version 1.6

54 Confidential

7 Appendix

7.1 Example for a XML FAST template

This example of Decoding the FAST-message.

Figure 15: Example for a FAST template with repeating group

